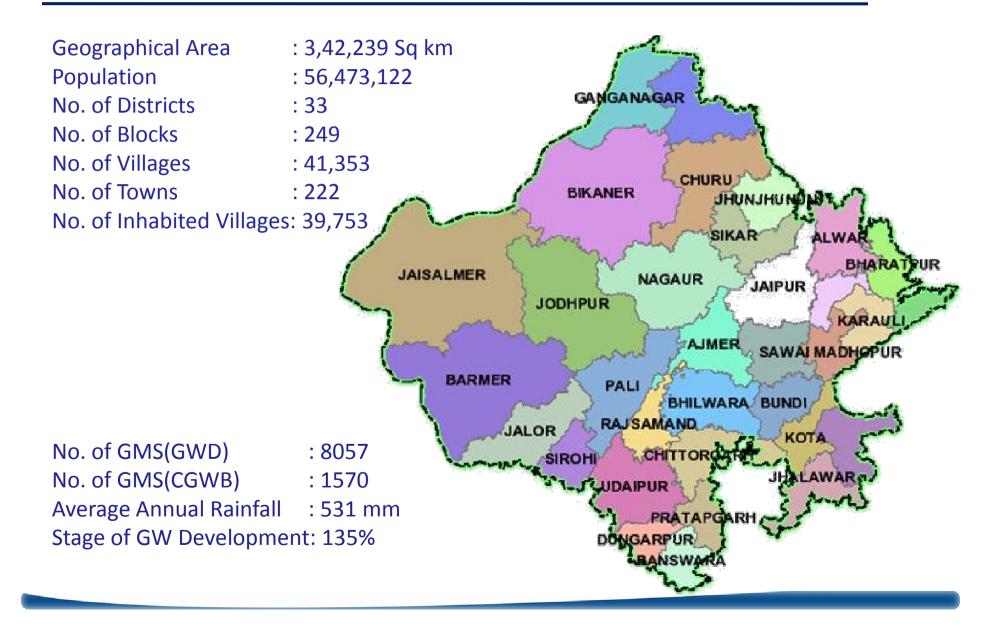


Aquifer Mapping and Village Level Ground Water Resource Information System for Rajasthan State



Ground Water Management Expert EU SPP TA Team Former Commissioner (GW) Ministry of Water Resources, Gol

M Mehta

Introduction

Rajasthan in the Context of India

Rajasthan is the largest state in India with over 10% of its area but only 1.4% of its water resources

	Rajasthan	India	Rajasthan as % of India
Area (Mha)	34.0	328.0	10.40%
Population (2001) (Million)	56.5	1,050.0	5.40%
Rainfall (mm)	531.0	1,125.0	47.20%
Utilizable water resources (BCM)	32.9	2,300.0	1.40%
a. Surface water (BCM)	21.7	1,870.0	1.16%
b. Ground water (BCM)	11.2	431.0	2.50%
Cultivable area (Mha)	25.7	184.4	13.94%
Irrigated area (Mha)	7.7	105.0	7.30%
Food production (Million tonne)	13.8	211.0	6.60%

Vulnerability of Water Resources in Rajasthan

Source	Availability	Utilisation
Surface water		
Internal	16.05	11.55
Inter-State	17.89	12.66
Total	33.94	23.95 (71%)
Ground water	11.15	15.39 (138%)
Grand Total	44.09	35.78 (86%)

Note: (i) as of year 2008

(ii) units in billion cubic meters unless mentioned otherwise

(iii) Evapo-transpiration: 1500 -2500 mm p.a

Water levels falling at alarming rate in most of the state

Water quality problems due to geological reasons, municipal and industrial pollution

EU SPP Rajasthan- An Overview

Objectives

- State wide water sector reforms leading to sustainable and integrated water resources management
- Support PRIs in 11 districts for:
 - Equitable access to safe, adequate, affordable, sustainable drinking water
 - Conservation and replenishment of surface and ground water

Sector budget support of €80 mn from EU

- € 73.5 mn for the government of Rajasthan implementation from 2007 till December 2013
- Remaining € 6.5 mn Technical Assistance, Monitoring/Evaluation, Audits (EU contracted)

Time period 2007 - 2013

Sector Budget Support - Components

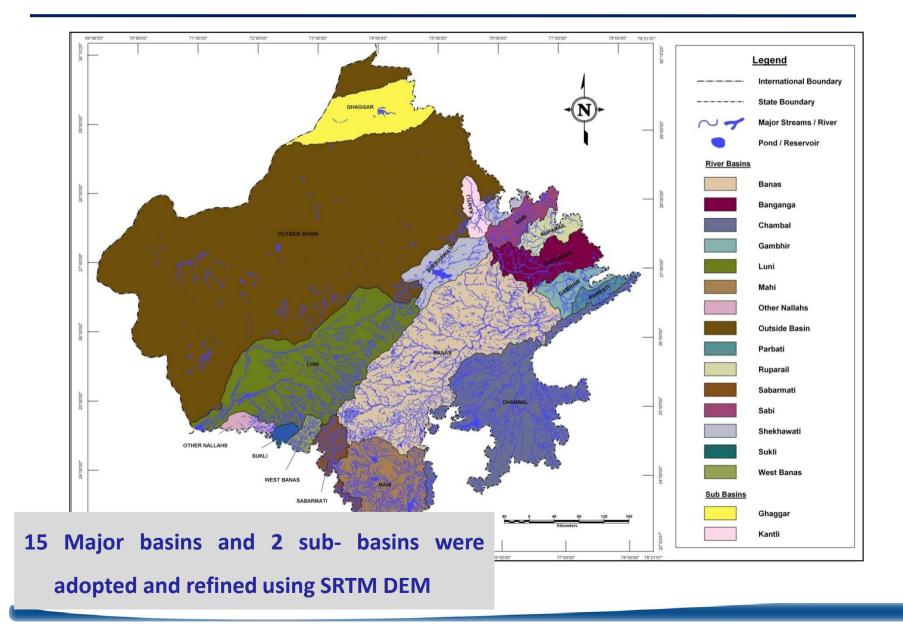
- Support to State-wide water sector reforms
 - Strengthen State Water Resources & Planning Department (SWRPD)
 - Sustainable Water Campaign and
 - Institutional Development of Public Health Engineering, Ground Water, Drinking and Panchayati Raj & Rural Development departments.
- Support to PRIs/user groups in 11 selected districts and blocks
 - Institutional Development of PRIs/user groups particularly women and poor
 - Capacity Development of PRIs/user groups
 - Investment component of PRIs/user groups.

Aquifer Mapping Project Objectives

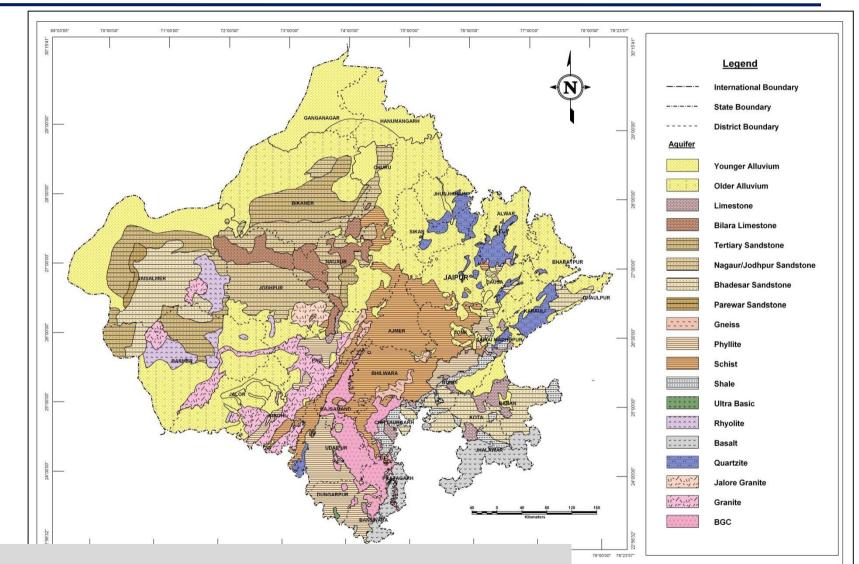
- Computerization of historic ground water data,
- Interpretation of data and demarcation of the aquifer system in three dimensions
- Estimation of the aquifer wise groundwater resources and apportion to the level of village,
- Benchmarking of GW Monitoring network and recommendations for its optimization,
- DGPS Survey of monitoring wells for accurate position and RL establishment,
- Development of Web enabled GIS Application for the assessment and management of Ground water,
- Empowering the community to asses periodical ground water availability
- To equip ground water users / stakeholders with the necessary data, skills and knowledge to manage groundwater resources available in a sustainable manner.

Inputs Used

- Geographical locations of all existing ground water monitoring Wells with their RL values,
- Time series Water Level and Water Quality (1984 2011) Data of both GWD and CGWB,
- Exploratory well lithologs of both GWD and CGWB,
- Geophysical Survey Data Electrical Resistivity data, Interpreted Lithologs, Geophysical well logging data,
- Metrological Data (Rainfall only),
- Aquifer Parameters of both GWD and CGWB,
- Updated Administrative Boundary (state, district, block and village) and Demographic data as per Census of India and State,
- District wise Geological, Geomorphology and Groundwater Potential Zone Maps etc.,
- Guidelines of GEC and Published Annual Assessment Reports of the State Groundwater Department.


Data Entry, Validation & Evaluation

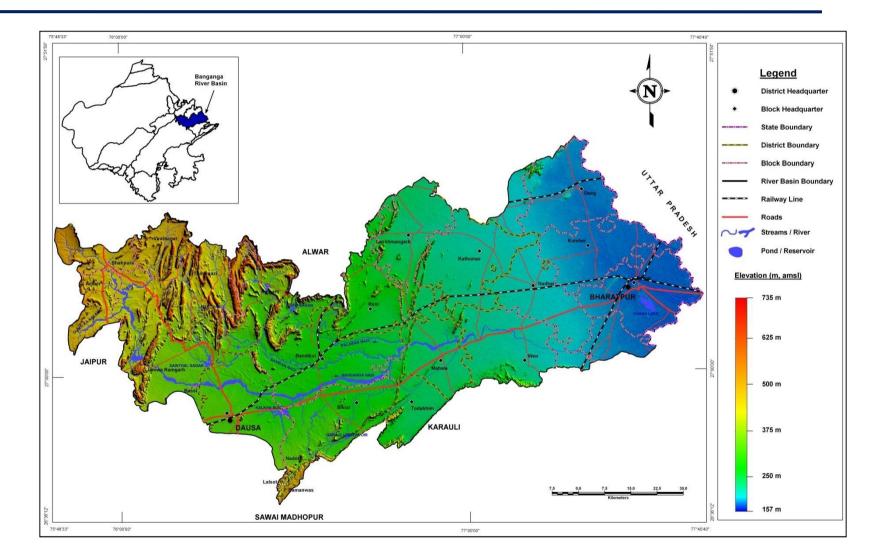
O KEY WELL								Chtry Form	<i></i>					
			KE	WELL	DATA ENTRY			District ALWA VES No. ALWA			LLage DARA BAMAN Parch Assigned		Block	RAJGARH
General Infor Distric		AJMER	~	Block		ARNALI	RUP.	VES No. Ex.©or99orA-9orA-9 Location	9 or A/99)	106	Section			Org. P.H.E.D
Well N	чo	45 K1 Ca	~	RID	1041585	Se	earch	Lattitude			Longitude		Bearin	
Well No	45 K1	Ca		1				Water Level Proposed Struc			k Encoun. at(m) Pro. Depth(m)		7, of Water . Discharge	POTABLE V
Owner	CHATEI	R SINGH S/O	SHRI ARJUN	SINGH		Well Type	D/W	Hydro Form. Report		/IUM / SCHIST HYSICAL DATA OF	DISTRICT ALWAR, JAN-20	11	Date 02	V JUL V 2002 V
Location						-		Recommendation	NOT	RECOMMENDED				
	25°48	'09"	(12 25 3	(6)	Longitude 74°	02'52"	(12 25 36)	Result						
RL(M.P.)			mamsl		RL(G.L.) 527	. 560	mansl	Remarks Resis(Ohm-m)	Depth(m)	Thickness (m) Expected	Litholog	E	xpected Quality
Location	ON TH	E LHS OF RO	AD TO KHEDA	KALLAN, 3	INSIDES VILLAGE, JUST OPI	OSITE NAND PUMP		ρ1 65.97 ρ2 51.22 ρ3 66.10	d1 d2 d3	h1 0.87 h2 0.41 h3 0.60	L1 SAND AND KAN L2 SAND AND KAN L3 SAND AND KAN	KAR	EQ1	
Formation	SCHEST	T						ρ4 94.89 ρ5 124.49	d4	h4 0.89 h5 1.29	L4 HARD ROCK L5 HARD ROCK		EQ4 EQ5	
Potantial 2	one !	Sch2		Canal Con	mand Area Dia	Of Well 5.30	Unit m	 p6 145.32 p7 146.22 p8 128.26 	d6 d7 d8	h6 1.90 h7 2.79 h8 4.09	L6 HARD ROCK L7 HARD ROCK L8 HARD ROCK		EQ6	
Measuring P	oint [1.50 Vn	it m	Ground W	ater Withdrawl 40	Unit m³/da	or	ρ9 172.85 ρ10 243.41	d9	h9 6.01 h10 8.81	L9 HARD ROCK		EQ8 EQ9 POTAE	LE
Total Depth	• [18.8 Vn	it m	Purpose	I	220 0.2		ρ11 221.31 ρ12 109.55	d11	h11 1294 h12 19.00	L10 HARD ROCK		EQ10 EQ11	
Remarks	Γ	1						ρ13 ρ14	d13	h13	L13		EQ12 EQ13	
	New	Save	Water Ly	/I Entry	Exit Update	Delete Clea	ir)	ρ15	d15	h15	L14 L15		EQ14 EQ15	
	A STOLEN		Generation						Reset	New	Vpdate Clear	Delete	Exit	Save


A Snap shot of Key well (WL) / Geophysical Data Entry Form

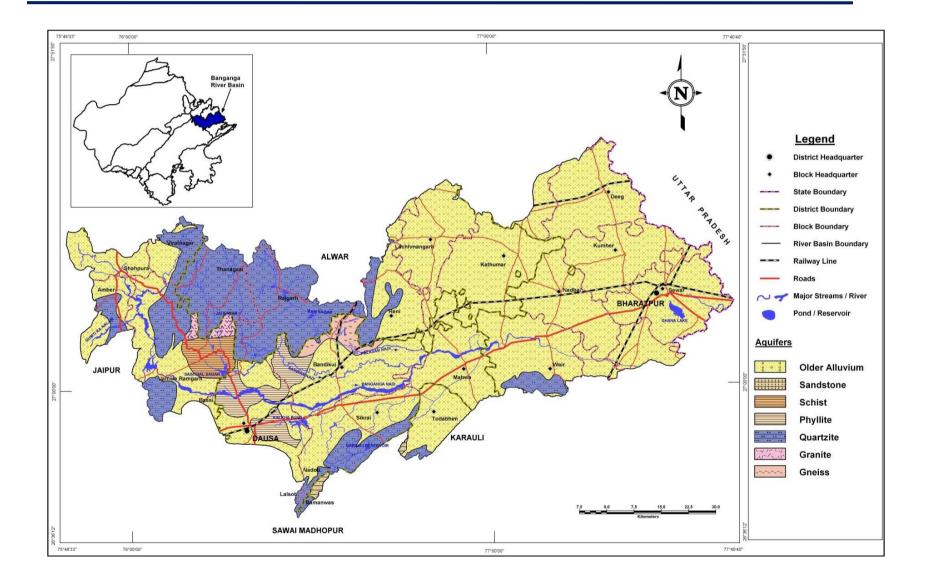
- For each type of input data, specific forms and formats were designed,
- Quality checks were adopted to ensure error free data entry into database

River Basins

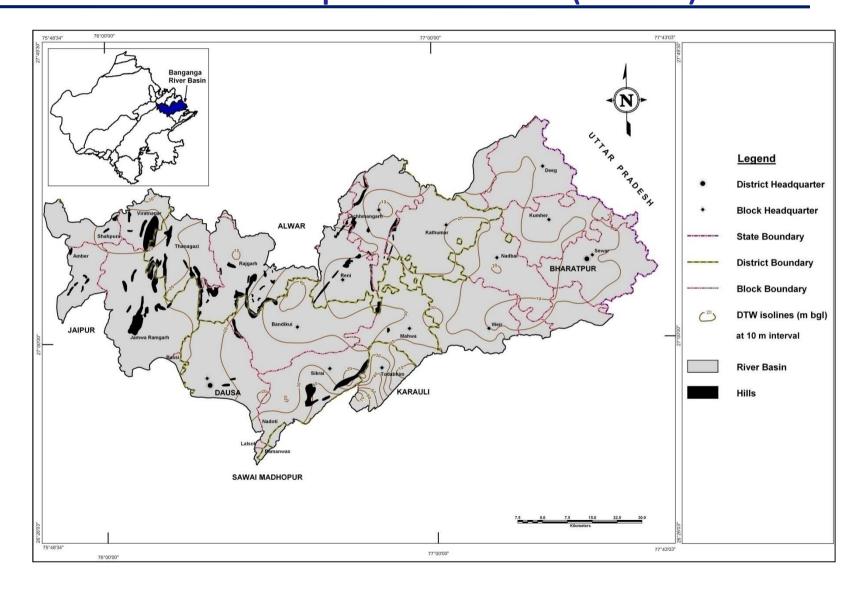
Aquifer Distribution Map

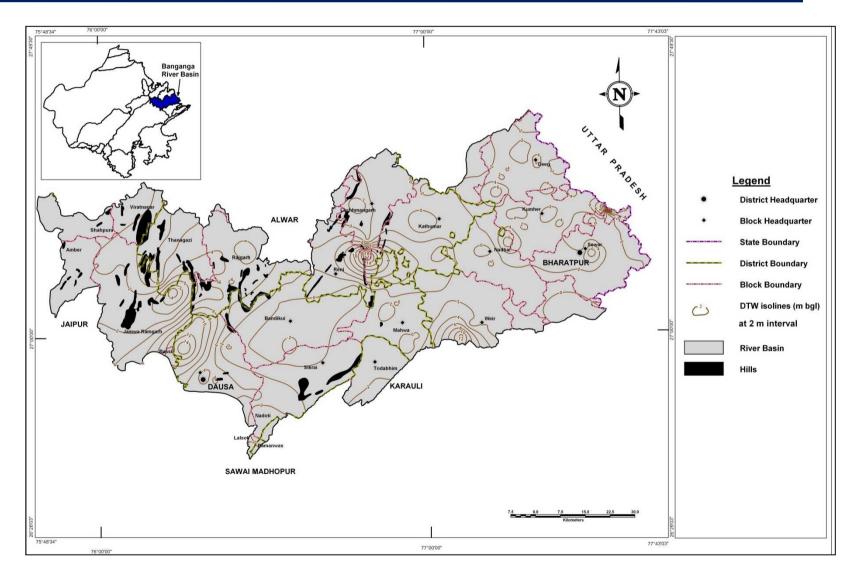

19 Regional aquifer systems were defined and adopted

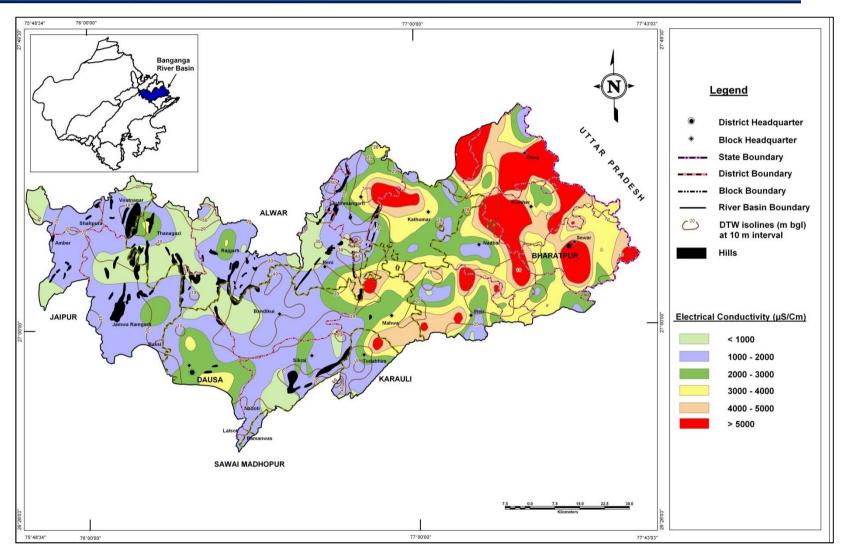
Basin Wise Thematic Maps

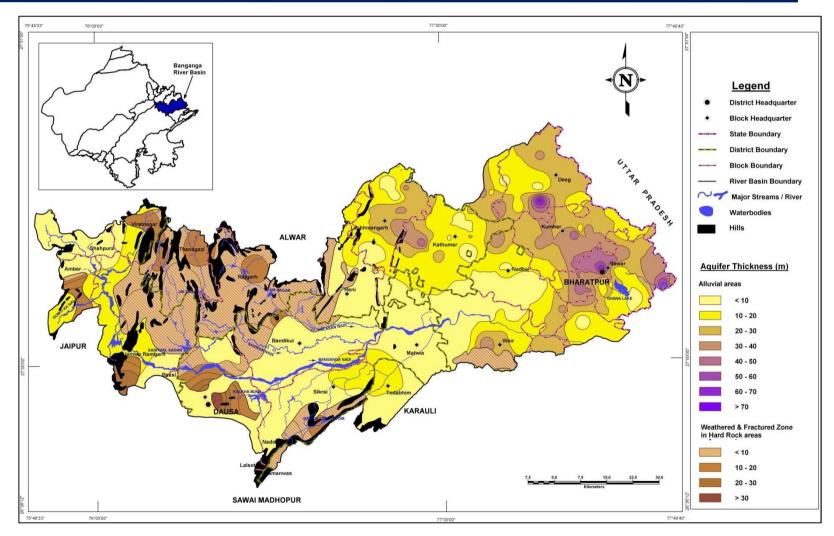

- Digital maps on following themes were prepared for systematic assessment of aquifers in a basin:
 - Geological, geomorphological, groundwater potential maps,
 - Well (GMS and Exploratory) location maps,
 - Depth to water level, Water table elevation and fluctuation maps
 - Water quality maps (EC, Chloride, Fluoride, Nitrate) distribution maps
 - Depth to bedrock maps
 - Isopach maps for Unconfined and Confined aquifers (if present)
 - Multiple Vertical cross sections across the basin
 - 3D maps for panel diagram

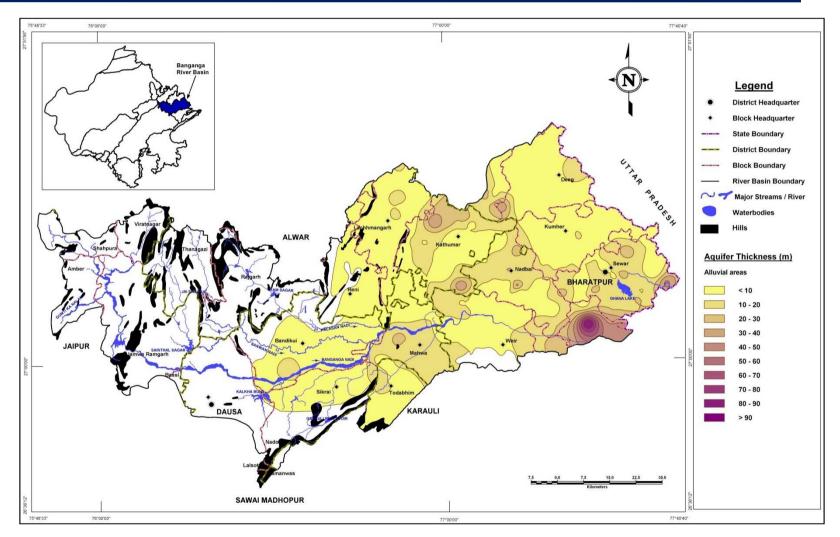
A sample basin walk through – Banganga basin

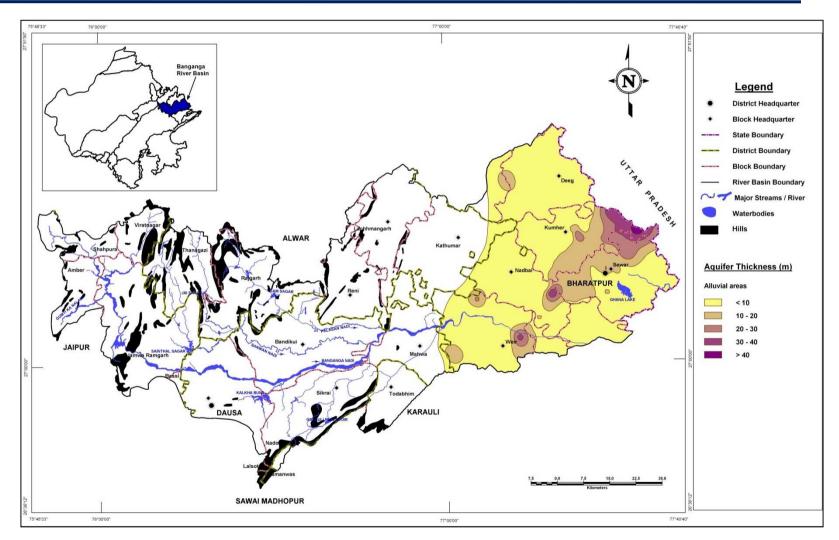

Banganga River Basin- Topography

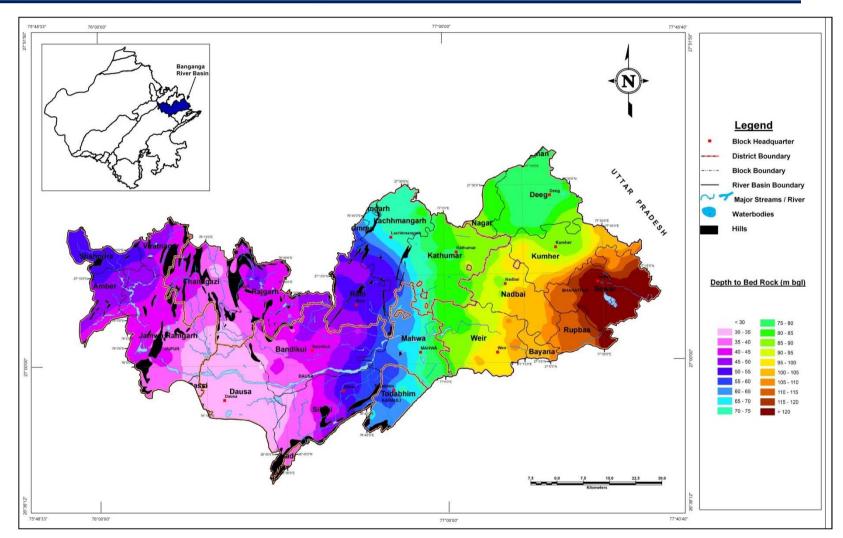

BANGANGA RIVER BASIN - Aquifer Distribution

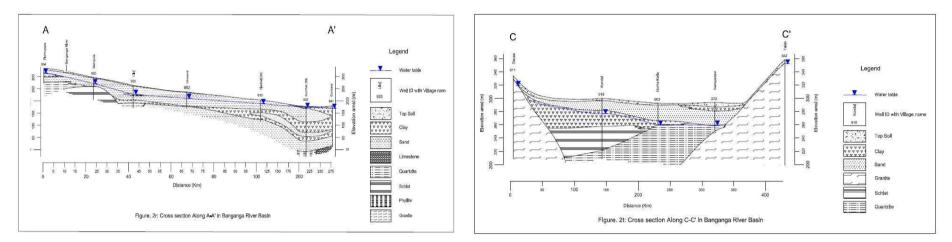

BANGANGA RIVER BASIN – Pre-Monsoon Depth to Water level (2000-09)

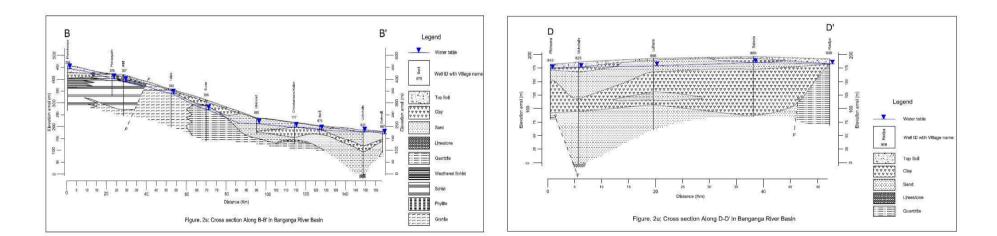

BANGANGA RIVER BASIN – Water level fluctuation (Pre-Post Monsoon, 2010)


Average Ground Water EC (Pre-Monsoon 2005-09)

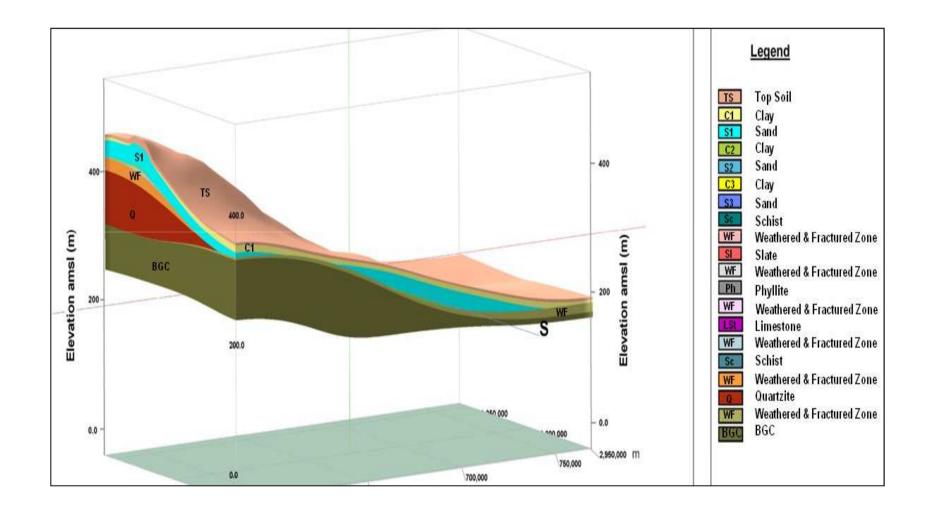

Thickness of Unconfined Aquifer


Thickness of First Confined Aquifer


Thickness of Second Confined Aquifer



Depth to Bedrock



Hydrogeological Cross-sections

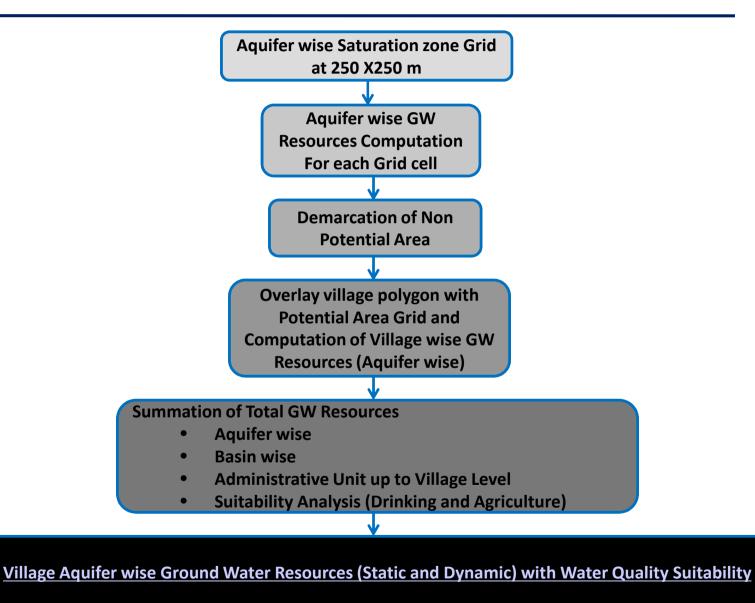
3D Aquifer Model

Static and Dynamic GW Resource Assessment

- Appraisal of current methodology of RGWD carried out and suitable refinements suggested,
- All the ground water recharge and discharge data linked to corresponding spatial features,
- Overlay analyses carried for isopach, GWP and other thematic maps for computation of basin wise, aquifer wise and village wise ground water resources,
- Both static and dynamic ground water resources were computed at 250m grid cells that can be summarized to any boundary,
- Quickly replicable and standardized methodology finalized for computation of resources annually.

Static and Dynamic GW Resources- Rajasthan

(Basin Wise)

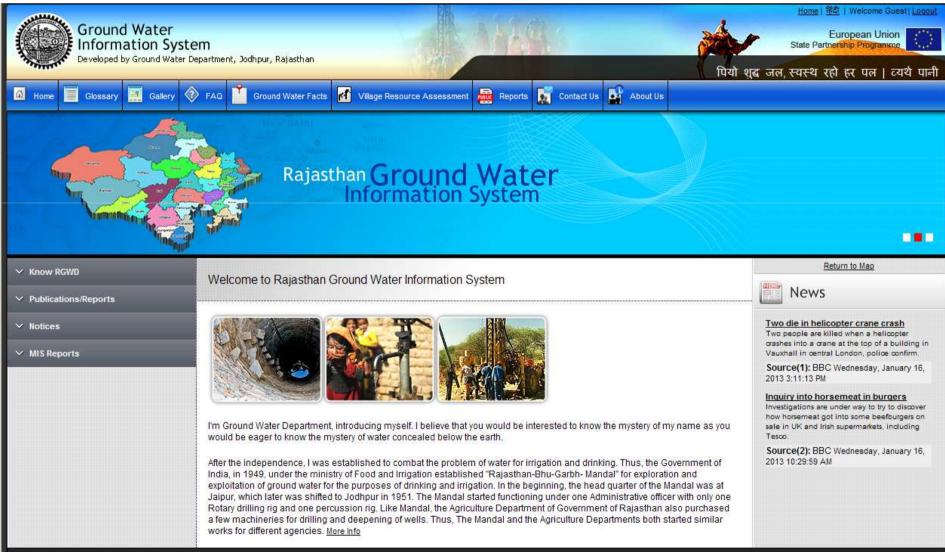

Desin Neme	Dynamic Resources *	Static Resources *
Basin Name	(mcm)	(mcm)
Banas	2,305.06	12,175.11
Banganga	710.66	10,139.45
Chambal	1,557.04	5,170.23
Gambhir	475.57	5,281.91
Ghaggar	246.72	44,829.12
Kantli	140.77	3,124.82
Luni	2,068.62	58,084.68
Mahi	383.01	2,896.80
Other Nallahs	17.83	6,138.36
Outside Basin	4,745.37	241,635.66
Parbati	140.78	2,664.52
Ruparail	386.95	5,313.16
Sabarmati	79.25	637.27
Sabi	234.32	5,725.46
Shekhawati	443.29	6,648.27
Sukli	26.58	245
West Banas	64.01	385.11
Total	14,025.82	411,094.93

Static and Dynamic GW Resources- Rajasthan

(Aquifer wise)

A quifer Name	Dynamic Resources *	Static Resources *
Aquifer Name	(mcm)	(mcm)
Basalt	207.21	629.95
BGC	270.01	2,226.93
Bilara Limestone	279.87	3,361.23
Gneiss	469.08	2,353.74
Granite	218.2	2,165.74
Granite Jalore	53.05	512.09
Limestone	246.39	1,064.26
Nagaur & Jodhpur Sandstone	291.48	4,453.79
Older Alluvium	5,712.20	199,826.99
Parewar Sandstone	47.71	1,150.22
Phyllite	461.29	3,231.78
Quartzite	170.14	999.36
Rhyolite	117.05	950.22
Sandstone	873.9	11,423.80
Schist	641.7	4,506.50
Shale	120.74	224.07
Tertiary Sandstone	534.61	17,965.53
Ultra Basic	2.06	18.96
Younger Alluvium	3,309.13	154,029.76
Total	14,025.82	411,094.93

Apportion of Ground Water Resources to Villages



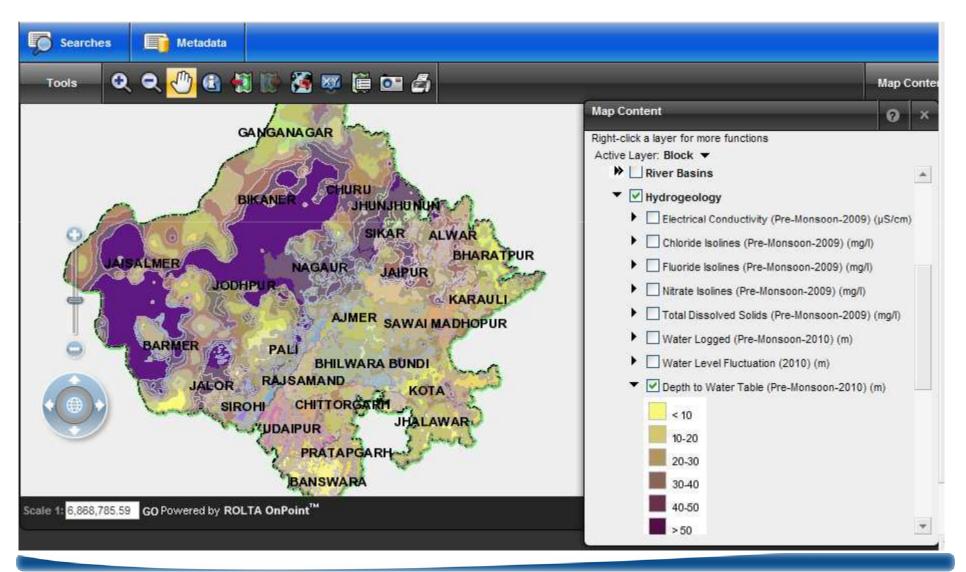
Monitoring Network Strengthening

- DGPS survey for establishment of sub-meter accurate X, Y and Z of more than 8000 wells,
- Geostatistical techniques in GIS were used for carrying out benchmarking and optimization of monitoring network,
- Separate analysis for water quality and water level have been carried out at sub-aquifer level,
- Recommendations for both reduction network of wells in areas where possible and strengthening in other areas made. Use of AWLR/DWLRs also made,

Ground Water Information System

To quickly access GWD Rajasthan's info base in the form of maps and data related to groundwater level and quality of the state

Central Ground Water Board Raiasthan Water Resources Water Resource Information Syster


Village Level Ground Water Summary

Visualize the data village level data in the form of graphs, analytical charts maps and reports

Inform	nd Water nation Sys I by Ground Wate	tem r Department, Jodhpur, R	Rajasthan	149.3			Ŕ		हिंदी Welcome Gue European Unior Inership Programm	
Select your village to District DUNGARPUR	o see the Villay	ck DUNGARPUR	Gram Pa (Optiona	- Nelec	t 🔹	Village	BAGDARI Return to Map	~	Submit	
	Population :	: 1376	Area (Sq.km	n.):7.42	Aquifer : Ph	yllite				
		Electrical Conductivity	(EC)	Chloride (CI)		Fluoride	e (F)			
	Human	Suitable		Suitable		Unsuitab	le			
	Cattle	Suitable		Suitable		Suitable				
		r Agriculture : Suitable urces (MCM) : 3.3425		Dynar	nic Resources (201	0) (MCM)	: 0.2623			

Statewide Thematic Ground Water Maps

A sample map of depth to water table (Pre Monsoon, 2010)

Graphical Presentation of Archived Data

Intuitive water level charts for any historic year range

Graphical Presentation of Archived Data

Water quality variation charts to visualize trends

for Village Level GW Resources Management

User to input basic WL depth to know the balance GW resources

trict: GANGANAGAR Y Block: SURATGARH	Gram Panchayat:(Optional) BIRMANA Village: HARISINGHPURA
e-Monsoon Depth to water level (mbgl) : 13.5 st-Monsoon Depth to water level (mbgl) : 11.23	(Please enter the depth to water level as on 15th June) Date: 06/19/2012
Water Quality : Ground water quality is Unsuitable for (drinking water quality standards adopted from Bureau concentration)	or drinking purpose. of Indian Standards 1991, later amended til 2008, for dissolved Solids, chloride and Fluoride
Water Resources: The ground water resources being current date of measurement. On this basis, the change	g computed here based on difference in water table depth from pre-monsoon levels to the
	e in storage renects available dynamic groundwater resource only.
requirements for next 40 days, provided the same is no	uirement. The available dynamic ground water resource will meet the domestic water

Achievements

- All the relevant historic ground water related possessed by Department is digitally available for scientists,
- The Department now has large number of GIS software licenses and those for ground water study (like: Surfer, Aquachem, Rockworks, Visual Modflow) for quickly derive analytical results,
- CGWB and GWD data integrated through implementation of GEMS at GWD,
- Training on all the softwares has been imparted to GWD scientists for carrying out GIS based mapping and analysis,
- GW resource can now be conputed very quickly, accurately and annually,
- All the data and maps are in public domain,
- Villagers can access the information interactively and participate in GW

management,

Road Ahead

- Computerization of all the district offices,
- Improving the distribution and accuracy of parameters for GW assessment,
- Synergy and interaction with other water related departments within State and Centre
- Continuous learning and enhance of skills
- Involvement of village level stakeholders through awareness raising campaigns

Thank You